Bordat Algorithm in Pseudo Code

Esteban Marquer

2020 - 2021

Data:

I: incidence relation G: objects C_k : some concept x: some object **Result:** $f_{C_k}(x)$ (intention of x restricted to $(G \setminus X_k)$) $(X_k, Y_k) \leftarrow C_k$; // unpack the concept C_k // Restrict I to $(G \setminus X_k) \times Y_k$ $J \leftarrow I$; Remove from J all the objects (rows) of X_k ; Remove from J all the attributes (columns) **not** in Y_k ; Let \cdot'^J be the derivation operator over the incidence relation J; We can now compute x'^J the intent of x in J; **return** x'^J

Algorithm 1: $f_{C_k}(x)$: intention of x restricted to $(G \setminus X_k) \times Y_k$

Data: S: some set, implied with no duplicates **Result:** maximal elements (sets) in the set of sets $max \leftarrow S$ forall x in S do | forall y in max do | if $x \subset y$ then | Remove x from max; | end end return max

Algorithm 2: Max(S): all maximal elements (sets) in the set of sets S; if S has duplicate elements (*i.e.* S is not a set), remove them before applying the algorithm

Data: *I*: incidence relation M: attributes G: objects $\bot = (M', M)$ $\top = (\emptyset', \emptyset)$ **Result:** the set C of concepts $C_0 \leftarrow \bot;$ $\mathcal{C} \leftarrow [\bot];$ $n \leftarrow 0;$ while $C_n \in \mathcal{C}$ do // process all the created concepts one by one $(X_n, Y_n) \leftarrow C_n; //$ unpack the previous concept C// Prepare f_{C_n} Store somewhere J the restricted incidence, as it will be used many times: J is I without the objects of X_n , and only the attributes in Y_n ; // Compute Y_{n+1} $S \leftarrow \{\}; // \text{ set of restricted intents of objects not in } X_n$ forall x in $G \setminus X_n$ do Add $f_{C_n}(x)$ to S; end // Max(S) is "all the elements (sets) in S which are not subsets of other elements of S''candidates $\leftarrow Max(S);$ forall $Y_{candidate} \in candidates$ do if $Y_{candidate}$ in C then C_n is subsumed by the concept in which $Y_{candidate}$ appears; skip this candidate; else // Compute $X_{candidate} = X_n \cup \{x \in (G \setminus X_n) \text{ such that } f_{C_n}(x) = Y_{candidate}\}$ $X_{candidate} \leftarrow X_n;$ for all $x \text{ in } G \backslash X_n$ do if $f_{C_n}(x) = Y_{candidate}$ then Add x to $X_{candidate}$; end end $C_{candidate} \leftarrow (X_{candidate}, Y_{candidate});$ Add $C_{candidate}$ to C; C_n is subsumed by $C_{candidate}$; end \mathbf{end} $n \leftarrow n+1;$ end return \mathcal{C} and subsumption relation

Algorithm 3: Bordat: find all the concepts and build the lattice