Bordat Algorithm in Pseudo Code

Esteban Marquer

2020-2021

```
Data:
\(I\) : incidence relation
\(G\) : objects
\(C_{k}\) : some concept
\(x\) : some object
Result: \(f_{C_{k}}(x)\) (intention of \(x\) restricted to \(\left(G \backslash X_{k}\right)\) )
\(\left(X_{k}, Y_{k}\right) \leftarrow C_{k} ; / /\) unpack the concept \(C_{k}\)
// Restrict \(I\) to \(\left(G \backslash X_{k}\right) \times Y_{k}\)
\(J \leftarrow I ;\)
Remove from \(J\) all the objects (rows) of \(X_{k}\);
Remove from \(J\) all the attributes (columns) not in \(Y_{k}\);
Let \({ }^{\prime}{ }^{\prime}\) be the derivation operator over the incidence relation \(J\);
We can now compute \(x^{\prime J}\) the intent of \(x\) in \(J\);
return \(x^{\prime J}\)
```

Algorithm 1: $f_{C_{k}}(x)$: intention of x restricted to $\left(G \backslash X_{k}\right) \times Y_{k}$

Data: S : some set, implied with no duplicates
Result: maximal elements (sets) in the set of sets

```
max}\leftarrowS\mathrm{ forall }x\mathrm{ in S do
    forall y in max do
        if }x\subsety\mathrm{ then
            Remove x from max;
        end
    end
end
return max
```

Algorithm 2: $\operatorname{Max}(S)$: all maximal elements (sets) in the set of sets S; if S has duplicate elements (i.e. S is not a set), remove them before applying the algorithm

```
Data:
\(I\) : incidence relation
\(M\) : attributes
\(G\) : objects
\(\perp=\left(M^{\prime}, M\right)\)
\(\top=\left(\emptyset^{\prime}, \emptyset\right)\)
```

Result: the set \mathcal{C} of concepts
$C_{0} \leftarrow \perp ;$
$\mathcal{C} \leftarrow[\perp] ;$
$n \leftarrow 0$;
while $C_{n} \in \mathcal{C}$ do // process all the created concepts one by one
$\left(X_{n}, Y_{n}\right) \leftarrow C_{n} ; / /$ unpack the previous concept C
// Prepare $f_{C_{n}}$
Store somewhere J the restricted incidence, as it will be used many times: J is I without the objects of
X_{n}, and only the attributes in Y_{n};
// Compute Y_{n+1}
$S \leftarrow\left\}\right.$; // set of restricted intents of objects not in X_{n}
forall x in $G \backslash X_{n}$ do
Add $f_{C_{n}}(x)$ to S;
end
// $\operatorname{Max}(S)$ is "all the elements (sets) in S which are not subsets of other elements of
S"
candidates $\leftarrow \operatorname{Max}(S)$;
forall $Y_{\text {candidate }} \in$ candidates do
if $Y_{\text {candidate }}$ in \mathcal{C} then
C_{n} is subsumed by the concept in which $Y_{\text {candidate }}$ appears;
skip this candidate;
else
// Compute $X_{\text {candidate }}=X_{n} \cup\left\{x \in\left(G \backslash X_{n}\right)\right.$ such that $\left.f_{C_{n}}(x)=Y_{\text {candidate }}\right\}$
$X_{\text {candidate }} \leftarrow X_{n}$;
forall x in $G \backslash X_{n}$ do
if $f_{C_{n}}(x)=Y_{\text {candidate }}$ then
Add x to $X_{\text {candidate }}$;
end
end
$C_{\text {candidate }} \leftarrow\left(X_{\text {candidate }}, Y_{\text {candidate }}\right)$;
Add $C_{\text {candidate }}$ to \mathcal{C};
C_{n} is subsumed by $C_{\text {candidate }}$;
end
end
$n \leftarrow n+1 ;$
end
return \mathcal{C} and subsumption relation

Algorithm 3: Bordat: find all the concepts and build the lattice

